Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA)
نویسندگان
چکیده
Silver nanoparticles (AgNPs) have been shown great interest because of their potential antibacterial effect. Recently, this has been increased due to resistance in some pathogenic bacteria strains to conventional antibiotics, which has initiated new studies to search for more effective treatments against resistant microorganisms. For these reasons, AgNPs have become an important approach for applications in nanobiotechnology in the development of antibiotic treatment of different bacterial infections. This study was aimed at synthesizing AgNPs using cysteine as a reducer agent and cetyl-tri-methyl-ammonium bromide as a stabilizer in order to obtain more efficient treatment against the pathogen bacteria Escherichia coli O157:H7. These AgNPs were characterized through UV-Vis spectroscopy, transmission electron microscopy, and dynamic light scattering. From these analyses, formation of spherical nanoparticles with an average size of 55 nm was confirmed. Finally, minimal inhibitory concentration (MIC) and minimal bactericide concentration (MBC) of these AgNPs against pathogenic strains E. coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) were determined in both solid and liquid media. MIC and MBC values were around 0.25 μg/mL and 1 μg/mL, respectively. These parameters were comparable to those reported in the literature and were even more effective than other synthesized AgNPs.
منابع مشابه
Antibacterial Effects of Wood Structural Components and Extractives from Pinus sylvestris and Picea abies on Methicillin-Resistant Staphylococcus aureus and Escherichia coli O157:H7
Antibacterial properties of wood structural components and extractives were investigated against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli O157:H7 by placing bacterial inoculum on the model surfaces and incubating them for 2, 4, and 24 h. After incubation, the amount of viable bacteria on the surfaces was studied. The film coverage and thickness were evaluated with...
متن کاملAntibacterial Effects of Extracts of Pinus sylvestris and Picea abies against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Streptococcus pneumoniae
Pine heartwood, sapwood, and spruce extracts were tested against methicillin-resistant Staphylococcus aureus (MRSA), vancomycinresistant Enterococcus faecalis (VRE), Escherichia coli O157:H7, and Streptococcus pneumoniae. The bacterial strains were cultured in a broth with and without the wood extracts. Also, the antibacterial effect of the extracts was studied by performing the antimicrobial s...
متن کاملSynthesis of silver nanoparticles in montmorillonite and their antibacterial behavior
Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO(3) and NaBH(4) were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentrati...
متن کاملSynthesis and characterization of silver nanoparticles for antibacterial activity
We consider of the antimicrobial activity on the Ag nanoparticles(Ag NPs) aqueous solutions, which was prepared using a stabilizer, such as poly(N vinyl 2 pyrrolidone PVP , for Staphylococcus aureus) S aureus and Escherichia coli E coli by measuring the minimum inhibitory concentration MIC . Antimicrobial effect of Ag NPs for S aureus and E coli was investigated using disk diffusion method Also...
متن کاملSynthesis and characterization of silver nanoparticles for antibacterial activity
We consider of the antimicrobial activity on the Ag nanoparticles(Ag NPs) aqueous solutions, which was prepared using a stabilizer, such as poly(N vinyl 2 pyrrolidone PVP , for Staphylococcus aureus) S aureus and Escherichia coli E coli by measuring the minimum inhibitory concentration MIC . Antimicrobial effect of Ag NPs for S aureus and E coli was investigated using disk diffusion method Also...
متن کامل